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Abstract In this paper we take a closer look at Penrose’s New Argument for the
claim that the human mind cannot be mechanized and investigate whether the ar-
gument can be formalized in a sound and coherent way using a theory of truth and
absolute provability. Our findings are negative; we can show that there will be no
consistent theory that allows for a formalization of Penrose’s argument in a straight-
forward way. In a second step we consider Penrose’s overall strategy for arguing for
his view and provide a reasonable theory of truth and absolute provability in which
this strategy leads to a sound argument for the claim that the human mind cannot be
mechanized. However, we argue that the argument is intuitively implausible since it
relies on a pathological feature of the proposed theory.

1 Introduction

Gödel’s Incompleteness Theorems are beyond doubt amongst the greatest and most
interesting results in mathematical logic of the 20th century and have attracted inter-
est far beyond the frontiers of logic and mathematics. Gödel’s theorems even found
application outside of logic and mathematics, and, in fact, several non-mathematical
propositions were claimed to be consequences of the incompleteness theorems. One
particularly striking such proposition was the claim that the human mind cannot
be mechanized, which was defended by several authors, most prominently Lucas
(1961) and Penrose (1989, 1994, 1996). As a matter of fact the origins of this de-
bate are with Gödel himself. Gödel in his celebrated Gibb’s lecture, entitled Some
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basic theorems on the foundations of mathematics and their implications (Gödel,
1995), explored some philosophical consequences of his incompleteness theorems.
Famously, his reflections led him to a disjunctive conclusion, which is known as
Gödel’s Disjunction:

Either mathematics is incompletable in this sense, that its evident axioms can never be com-
prised in a finite rule, that is to say, the human mind (even within the realm of pure mathe-
matics) infinitely surpasses the powers of any finite machine, or else there exist absolutely
unsolvable diophantine problems (. . . ). (Gödel, 1995, p. 310)

According to the first disjunct the set of mathematical theorems that the (idealized)
human mind can produce, that is prove, cannot be recursively axiomatized, indeed,
the set is not recursively enumerable and therefore cannot be the output of a Turing
machine or any other effective algorithm. The second disjunct asserts that there
are sentences of the mathematical language such that neither the sentence nor its
negation are among the mathematical theorems the human mind can produce. If this
is paired with a classical, that is, bivalent view according to which each sentence
is either true or false, then there are sentences that are absolutely unprovable.2 The
notion of absolute provability we have just employed is meant to stand for some
intuitive notion of proof that is supposed to capture the process in which the human
mind produces mathematical theorems.

In our terminology Gödel’s Disjunction (henceforth GD) thus asserts that either
the set of absolutely provable sentences cannot be recursively enumerated or there
exists a true mathematical sentence which is not absolutely provable. Indeed, putting
aside worries concerning the obscure notion of absolute provability for the moment,
GD follows from the incompleteness theorems if it is understood in this way. How-
ever, Gödel made it clear, that he did not think that either one of the disjuncts of the
disjunction could be established solely by appeal to the incompleteness theorems.
In contrast, Lucas, Penrose and other authors thought differently and argued that the
incompleteness theorems imply the first disjunct of GD. In other words, Lucas and
Penrose thought that they could refute mechanism, that is, the idea that the outputs
of the human mind can be produced by an effective algorithm.3 There are basically
two arguments for the first disjunct of GD. The first argument was popularized by
Lucas (1961), while the second argument, Penrose’s so-called New Argument, was
introduced by Penrose (1994, 1996).

Lucas argued that while any recursively enumerable system F can never prove
its Gödel sentence, that is, a sentence saying of itself that it is not provable in F , the
human mind can always perceive it to be true: the Gödel sentence for F is absolutely
provable but not provable in F . According to Lucas this shows that the human mind

2 In fact, assuming bivalence is not necessary to “derive” Gödel’s Disjunction. It suffices to argue
that there are certain sentences that are either true or false but which are absolutely unprovable.
Gödel (1995) argues convincingly that this situation also arises if non-classical mathematics is
assumed.
3 Mechanism can also be understood as the stronger thesis that the human mind functions like
some particular algorithm, rather than that that the human mind and some algorithm have the same
outputs. We confine ourselves to the latter understanding and refer the reader to the Lindström
(2001), Shapiro (2003, 2016) and Koellner (2016) for a discussion of this issue.
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exceeds the notion of proof of every recursively axiomatizable mathematical theory.
However, to draw this conclusion Lucas needs the additional assumption that the
human mind can perceive that F is consistent, i.e., that it is absolutely provable that
F is consistent. Otherwise, Lucas would have argued only for the conditional state-
ment asserting that the Gödel sentence of F is true, if F is consistent. But this latter
claim is provable in F itself and therefore not sufficient for establishing the first
disjunct of GD. In general, it seems to be an implausible assumption that the—even
idealized—human mind can perceive the consistency (and inconsistency) of every
recursively axiomatizable theory.4 Moreover, as Koellner (2016) points out, this as-
sumption is also problematic for more principled reasons because it implies that we
are in possession of a Π 0

1 -oracle, which is tantamount to asserting that the outputs
of a human mind cannot be produced by a finite machine—but this is precisely what
Lucas’ argument was meant to show. All of this suggests that Lucas’ argument does
not make a convincing case for the first disjunct of GD.

In this paper we shall chiefly be concerned with Penrose’s so-called New Argu-
ment. As we shall see Penrose added a further twist to the Lucas-style arguments
for the first disjunct of GD by introducing some basic assumptions concerning the
notion of absolute provability. This brings the obscure notion of absolute provability
back into the limelight and one might reasonably expect Penrose to provide some
clarification. After all without further explanation this notion remains entirely mys-
terious and opaque, and it is impossible to evaluate claims that are made on behalf
of this notion. Moreover, by introducing specific assumptions on behalf of absolute
provability he also provides his opponent with an opportunity for resisting such an
argument for the first disjunct of GD. While it would be an unreasonable move to
deny Gödel’s incompleteness theorems, as they are part of core mathematics, it is
perfectly acceptable to resist some particular assumption concerning absolute prov-
ability:5 there is no generally agreed theory of absolute provability Penrose could
rely on. However, in this paper we will not discuss these issues any further and refer
the reader interested in a more thorough discussion of the notion of absolute prov-
ability to the work by Myhill (1960) and Leitgeb (2009).6,7 Rather following the
lead of Koellner (2016), we will pursue a charitable approach throughout this paper
and grant Penrose the assumptions he makes concerning absolute provability. We
shall query whether under Penrose’s assumptions his New Argument is a coherent
argument for the the first disjunct of GD.

4 See also Benacerraf (1967) or Lindström (2001) for remarks along these lines.
5 For remarks along these lines see, e.g., Shapiro (2003).
6 Absolute provability and GD have also been studied in so-called epistemic arithmetic. See, for
example, Shapiro (1985); Reinhardt (1986) and Carlson (2000).
7 Ultimately, we are very skeptical whether anything interesting and coherent can be said on behalf
of absolute provability but as indicated in the main text we bracket this worry for the purpose of
this paper.
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2 Penrose’s New Argument

Penrose (1996) summarizes his New Argument in the following way, where F is
some recursively axiomatizable system

Though I don’t know that I am necessarily F , I conclude that if I were, then system F would
have to be sound, more to the point, F ′ would have to be sound, where F ′ is F supplemented
by the further assertion “I am F”. I perceive that it follows from the assumption that I am
F that the Gödel statement G(F ′) would have to be true and, furthermore, that it would not
be a consequence of F ′. But I have just perceived that if “if I happened to be F , then G(F ′)
would have to be true”, and perceptions of this nature is precisely what F is supposed to
achieve. Since I am F , I deduce that I cannot be F after all. (Penrose, 1996)

Let us try to reconstruct the argument in an explicit way.8 This will also help
us to assess which assumptions concerning absolute provability are required for
carrying out the argument. To start the reconstruction we need to introduce some
additional terminology and to say a little bit more about what these systems are
that Penrose alludes to in the argument. From now on we take a system to be a
recursively enumerable set that is closed under modus ponens and extends Peano
Arithmetic (PA).9 We assume a system to be closed under modus ponens because
modus ponens is the standard rule of proof in logic. This assumption thus guarantees
that a system qua set of sentences does not deviate from the set of theorems that the
system can prove.10,11

To reconstruct Penrose’s argument we also need a sentential predicate K that
expresses absolute provability. The intended interpretation of this predicate is the set
of mathematical theorems the human mind can produce. Finally we need to clarify
what it means for a system F to be sound and how this is expressed. A system F is
sound iff all its theorems are true. In the formal setting this can be expressed by the
schemata

Fpφq→ φ ,

which holds for all sentences φ of the language. Throughout the paper pφq is the
numeral of the Gödel number of φ and thus acts as name of φ . Notice that by Gödel’s
second incompleteness theorem no recursively axiomatizable theory can prove its
own soundness.

We now carry out the reconstruction in a step-by-step manner:

8 See Shapiro (2003) for a very similar reconstruction of Penrose’s argument.
9 Both assumption are plausible and frequently assumed in the literature. See, e.g., Koellner (2016)
for discussion. A weaker arithmetical theory would do as well as long as it is sufficient for proving
Gödel’s incompleteness theorems.
10 Everything we say at this point would go through even if we do not assume a system to be closed
under modus ponens. In this case we would need to distinguish throughout the argument between
the system and what the system proves.
11 Of course, there are logics in which modus ponens is not a sound rule of proof. But in such
systems there will be alternative rules of proof and a similar problem will arise. Moreover, we
would be surprised, if Penrose were to argue against modus ponens.
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1. if I were [the system F], then system F would have to be sound.12

∀x(Fx↔ Kx)→ (Fpφq→ φ) for all φ

2. F ′ would have to be sound, where F ′ is F supplemented by the further assertion
“I am F”.

∀x(Fx↔ Kx)→ (F ′pφq→ φ) for all φ

3. I perceive that it follows from the assumption that I am F that the Gödel statement
G(F ′) would have to be true

∀x(Fx↔ Kx)→ G(F ′)

4. furthermore, that it [G(F ′)] would not be a consequence of F ′

(i) ∀x(Fx↔ Kx)→¬F ′pG(F ′)q

(ii) ∀x(Fx↔ Kx)→¬Fp∀x(Fx↔ Kx)→ G(F ′)q

5. I have just perceived that if “if I happened to be F , then G(F ′) would have to be
true”

Kp∀x(Fx↔ Kx)→ G(F ′)q

6. Since I am F , I deduce that I cannot be F after all

(i) ∀x(Fx↔ Kx)→ Fp∀x(Fx↔ Kx)→ G(F ′)q

(ii) ∀x(Fx↔ Kx)→⊥.

To get the argument off the ground we need to assume that that notion of absolute
provability is a sound notion: every sentence that is absolutely provable, i.e. every
mathematical theorem the human mind produces, is true. In other words we need to
assume for all sentences φ of the language:

(T) Kpφq→ φ .

If (T) is assumed, Line 1 is a valid assumption and we may proceed from there.
Line 2 then follows by weakening (and modus ponens). Notice that by the deduction
theorem we have the following equivalence

(†) F ′(pφq)↔ F(p∀x(Fx↔ Kx)→ φq),

which will be important later in the argument.
We obtain Line 3 by instantiating the schematic Line 2 to the Gödel sentence of

F ′. By the very construction of the Gödel sentence Line 3 is equivalent to Line 4(i)

12 Throughout the paper we take ∀xφ to be short for ∀x(Sent(x)→ φ) unless we explicitly mention
the restriction of the quantifier. Sent is a predicate representing the set of sentences of the language.
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and by (†) the latter is equivalent to 4(ii).13 Line 5 requires a further assumption
on behalf of absolute provability: if the human mind has produced a theorem, i.e., a
sentence has been shown to be absolutely provable, then this fact itself is absolutely
provable. This is nothing but the rule of necessitation for absolute provability:

(Nec)
φ

Kpφq
.

Given the rule of necessitation we obtain Line 5 from Line 3. By classical logic
Line 5 implies Line 6(i) but Line 6(i) together with Line 4(ii) yields Line 6(ii),
which establishes the first disjunct of GD, namely, that the mathematical theorems
the human mind can produce do not coincide with the theorems of any recursively
axiomatizable system. Notice that in order to draw this conclusion it was important
that no special assumption concerning F was made, since we need to use the rule
of universal generalization in the metalanguage.14 Thus assuming the principle (T)
and the rule (Nec) each step of Penrose’s New Argument is sound and consequently
one might think that Penrose has succeeded in providing a coherent argument for
the first disjunct of GD. Unfortunately though, the assumptions concerning absolute
provability, that is the principle (T) and the rule (Nec), are jointly inconsistent as
Myhill (1960) and Montague (1963) have taught us.15

Theorem 1 (Myhill/Montague). Let Σ be a theory extending Robinson Arithmetic
such that for all sentences φ of the language:

(i) Σ ` Kpφq→ φ

(ii) Σ ` φ ⇒ Σ ` Kpφq

for some primitive or complex predicate K. Then Σ is inconsistent.

This inconsistency result points to a further complication in providing an argu-
ment for the first disjunct of GD: it is not sufficient to suggest plausible principles
for absolute provability but one also has to guarantee that these principles are jointly
consistent. Moreover, the result by Myhill and Montague is only one of many incon-
sistency results and it is not an easy task to provide a satisfactory account or theory
of absolute provability.16 For this reason the aforementioned inconsistency results
are also known as intensional paradoxes.

Indeed, according to Wang (1996), Gödel thought that once we were in posses-
sion of a satisfactory solution to the intensional paradoxes, we could successfully
establish the first disjunct, that is, we could show that the human mind surpasses any
finite machine:
13 The Gödel sentence G(F ′) is a sentence for which, using the diagonal lemma, we can prove
¬F ′pG(F ′)q↔ G(F ′).
14 By the argument we obtain ¬∀x(Fx↔ Kx) and by universal generalization in the metalanguage
∀F¬∀x(Fx↔Kx). This yields¬∃F∀x(Fx↔Kx): there exists no recursively axiomatizable system
F that coincides with the set of absolutely provable sentences.
15 The fact that the principles Penrose appeals to in formulating his New Argument are jointly
inconsistent was already pointed out by Chalmers (1995) and Shapiro (2003), amongst others.
16 See Egré (2005) or (Stern, 2016, Chap. 3) for an overview of the various inconsistency results.



Penrose’s New Argument and Paradox 7

If one could clear up the intensional paradoxes somehow, one would get a clear proof that
mind is not [a] machine. (Wang, 1996, p. 187)

Even though it is perhaps safe to say that now, almost half a century later, we still
lack an entirely satisfactory solution to the intensional paradoxes, it is interesting
to apply the existing proposals to Penrose’s New Argument and check whether we
thereby obtain a coherent argument in favor of the first disjunct of GD. If this were
possible, this would be a partial vindication of Penrose but also of Gödel’s con-
viction that a satisfactory solution to the intensional paradoxes would lead to an
argument for the first disjunct of GD.

3 Truth and Intensional Paradox

The intensional paradoxes, which affect notions such as proof, knowledge, or be-
lief, have not received quite as much attention as the semantic paradoxes such as
the Liar paradox. But at least from a technical point of view the intensional and the
semantic paradoxes are closely related. In both cases paradox arises due to the ap-
plication of these notions to themselves. As a consequence, in both cases we have
roughly the same options how paradox can be avoided. The first option is to restrict
the characteristic schemes of these notions to a salient set of sentences that in some
way or another singles out the “good” instances from the “bad” ones in such a way
that paradox can no longer arise. For example, in the case of absolute provability
this would amount to restricting the scheme (T) and the rule (Nec) to specific sen-
tences so that Montague’s theorem no longer applies. The second, alternative option
would be to adopt weaker principles or schemata for these self-applicable notions;
principles that even if applied in full generality are jointly consistent.

This latter option of adopting weaker schemata does not seem to be a promis-
ing option if one is interested in resurrecting Penrose’s New Argument. As we have
seen, we need (T) and (Nec) in order to carry out Penrose’s reasoning and, at least
as long as no further resources are added, weaker principles will simply not do. So
we are left with the former option of restricting the scope of the schemata. However,
as far as we can see there is no obvious restriction that would enable us to vindicate
Penrose’s New Argument. The most immediate one that comes to mind is to restrict
the schemata to arithmetical sentences. But this restriction would make the transi-
tion from Line 1 to Line 2 and from Line 4 to Line 5 of the the argument unsound.17

A further and maybe more plausible strategy might be to divide the sentences of
the language into the paradoxical and the non-paradoxical ones. Unfortunately, this
distinction has proven rather elusive in the past and difficult to pin down. Moreover,
Penrose needs the classification, or at least a principled sub-classification thereof,
to be decidable for otherwise the reasoning leading to the first disjunct could not

17 Introducing a hierarchy of typed absolute provability predicates would not be of any help here.
Rather at each level we would face the problem anew and could never draw the desired conclusion.
See Shapiro (2003) for remarks along these lines.
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be carried out in a recursively axiomatizable system.18 This would undermine the
reductio-strategy of his argument, which is based on the assumption that the hu-
man mind is recursively axiomatizable. As a consequences the chances of finding
an acceptable restriction become even smaller since the more promising classifica-
tions proposed in the literature are not decidable, indeed they are of much greater
complexity. Now, even if, against all odds, we manage to restrict the schemata in
a recursive way that divides the sentences of the language into the “good”, non-
paradoxical and the “bad”, paradoxical ones, we still need to make sure that the
sentence (Nec) is applied to in Line 5 is such a “good” case. Unfortunately, the
work by Koellner (2016) shows that this will not generally be the case.

These remarks suggest that the usual options for dealing with the paradoxes of
self-applicable notions may not yield a formal framework in which the first disjunct
of GD can be proved along the lines of Penrose’s New Argument. Fortunately, there
is a further option that arises for certain intensional and semantic notions. The idea
is that at the root of all the paradoxes there is only one paradoxical notion, namely
the notion of truth. This idea would tie the intensional paradoxes to the semantic,
i.e. truth-theoretic, paradoxes in such a way that the paradoxicality of the inten-
sional notion, e.g. absolute provability, depends solely on the paradoxicality of the
notion of truth. The central idea of the strategy is to formulate the principles of ab-
solute provability using the truth predicate. For example, the principle (T) we have
appealed to in reconstructing Penrose’s reasoning would then be formulated as

(TK) ∀x(Kx→ T x).

If these revised principles of absolute provability are combined with a consistent
theory of truth, we obtain a consistent theory of truth and absolute provability. Such
a strategy has been recently developed by Stern (2014a,b, 2016) and, independently,
Koellner (2016). Moreover, Koellner’s work is directly motivated by Gödel’s Dis-
junction and the evaluation of Penrose’s New Argument. To implement this strategy
we need to introduce a truth predicate to the framework that is allowed to interact
with the absolute provability predicate. But Penrose’s New Argument makes explicit
use of the notion of truth at several places19 and thus an evaluation of his argument
in a framework where we have both, an absolute provability predicate and a truth
predicate, seems highly desirable and independently motivated. In the remainder of
this paper we shall therefore adopt this framework and investigate whether in such
a framework we can provide a coherent argument for the first disjunct of GD.

18 The restriction has to be decidable only if we assume the schemata to be characteristic of the
notion of absolute provability, that is, if they are assumed to be the axioms of the recursively
axiomatizable system. Otherwise, the restriction could be recursively enumerable.
19 See Line 1, 2, 3 and 5.
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3.1 Penrose’s New Argument Reconsidered

Koellner (2016) extracts three principle of truth and absolute provability he takes to
be crucial for reconstructing Penrose’s argument in a language with a truth and an
absolute provability predicate. These principles are the rule (Nec) and the principles

(TK) ∀x(K(x)→ T x)

(T -In) φ → Tpφq

Using these principles Penrose’s argument can be formalized, roughly following
Koellner (2016), as follows:

1. ∀x(Fx↔ Kx)→∀x(Fx→ T x) by (TK)
2. ∀x(Fx↔ Kx)→∀x(F ′x→ T x) by (T -In)
3. ∀x(Fx↔ Kx)→ G(F ′) by 2 and definition of G(F ′)
4. ∀x(Fx↔ Kx)→¬F ′pG(F ′)q by definition of G(F ′)
5. Kp∀x(Fx↔ Kx)→ G(F ′)q 4, by (Nec)
6. ∀x(Fx↔ Kx)→¬Fp∀x(Fx↔ Kx)→ G(F ′)q 4, by definition of F ′.
7. ∀x(Fx↔ Kx)→ Fp∀x(Fx↔ Kx)→ G(F ′)q 5
8. ∀x(Fx↔ Kx)→⊥ 6, 7.

Shortly, we will take a closer look at this reconstruction and investigate whether
the different steps of the argument are sound, given the principles of truth and ab-
solute provability Koellner puts forth. But before we do so, it is worth pointing out
that even in the presence of a truth predicate we need a self-applicable absolute
provability predicate to carry out the reasoning. For example, in Line 5 the absolute
provability predicate is applied to a sentence containing the predicate itself. What
about the truth predicate; need it be self-applicable? On the face of it at no point in
the argument is the truth predicate applied to a sentence in which it explicitly oc-
curs and, consequently, one might think that a typed truth predicate, that is, a truth
predicate that can only be applied to sentences in which the truth predicate does not
occur, will be sufficient for the argument. Eventually we will have a look at the pos-
sibility of carrying out Penrose’s New Argument within a typed theory of truth but
ultimately opting for a typed truth predicate is a cheat. After all in the present set up
the (idealized) human mind is meant to reflect about its proofs and capacities. For
example, the human mind is supposed to perceive that it is sound, that is, the princi-
ple (TK) should be absolutely provable.20 But then it follows from (TK) itself that
we may apply the truth predicate to sentences in which it occurs.21 Therefore, it is

20 Penrose (1996) explicitly agrees with this claim.
21 It is possible to block this conclusion by restricting the principle (TK) to sentences of the lan-
guage without the truth predicate. However, this would not really affect the argument: after all we
would have sentences in which the truth predicate is applied to sentences which the knowledge
predicate occurs. The knowledge predicate, in turn, may be applied to sentences in which the truth
predicate occurs. So the truth predicate is applied to sentences in which it implicitly occurs. In
order to maintain a coherent picture it should be possible to apply the truth predicate to sentences
containing itself.
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essentially right when Koellner (2016) concludes that “any formal system in which
the above argument can be implemented will be one involving a type-free theory of
K and a type-free theory of T ”. This, of course, leads to the question whether there
are such theories of truth and absolute provability in which Penrose’s New Argu-
ment or, more generally, arguments for the first disjunct of GD, can be carried out.
Koellner (2016) seems to be skeptical in this respect but detects a general problem
for establishing such a negative conclusion:22

It would be ideal if we could quantify over “all possible type-free theories of truth” and
show that no such theory yields a system that provided a convincing argument for the first
disjunct. But given the open-endedness of the notion of a possible ”type-free theory” it is
hard to see how to do this. (Koellner, 2016, p. 166)

As a consequence Koellner focuses on one sample theory of truth and absolute
provability he deems to be particularly attractive and shows that in this theory no
argument for the first disjunct can be provided. We shall take a somewhat different
approach to Koellner and propose to split up Koellner’s initial question into two
distinct questions: 1. Can Penrose’s New Argument be carried out in some consistent
theory of truth and absolute provability? 2. Are there reasonable theories of truth and
absolute provability that yield an argument for the first disjunct of GD? The first
question focuses entirely on whether one can coherently argue for the first disjunct
of GD following the outlines of Penrose’s New Argument. The second question,
however, asks for a coherent argument for the first disjunct of GD tout court. There
is no restriction on the structure of the argument and, in particular, we don’t need to
respect the outlines of Penrose’s New Argument. While it seems difficult to provide a
conclusive answer for the second question, which is the question Koellner addresses,
such a conclusive answer might be possible for the first question.

Indeed we think that for the first question a rather strong conclusion is possi-
ble provided the reconstruction of Penrose’s New Argument we employ is accepted:
there seems to be no coherent theory of truth and absolute provability in which the
New Argument is can be carried out. In contrast, for the second question, we show
that, under certain assumptions, there are reasonable theories of truth and absolute
provability in which a sound argument for the first disjunct can be given. However,
as we shall see, even though the argument is sound it is not very convincing for it
exploits a pathological feature of the theories of truth and absolute provability we
shall be considering. Since we are dealing with paradoxes, all solutions to these
paradoxes, i.e. theories of truth and absolute provability, will have certain patholog-
ical features. We think that if an argument for the first disjunct relies on the patho-
logical part rather than the intuitively motivated part of the theory then it will fail to
be convincing. After all it will lack any intuitive support and will remain a technical
peculiarity. Ultimately, we are skeptical as to whether a convincing argument for the
first disjunct can be given in a reasonable theory of truth and absolute provability.

We now return to the first question. To this end we need to take a closer look at
the reconstruction of Penrose’s argument Koellner proposes. Koellner (2016) does
not investigate the argument in detail for he can show that in the theory of truth DT

22 See (Koellner, 2016, p.184/185) for a clear expression of his skepticism.
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(Feferman, 2008) he is considering the first disjunct of GD is independent: it can be
neither proved nor refuted. However, if all steps of the argument were sound given
the assumptions Koellner puts forth, then there would be consistent theories of truth
and absolute provability in which the New Argument could be carried out.23 How-
ever, we already find ourselves in trouble when trying to reconstruct the inference
from Line 1 to Line 2. To see this, it is worth recalling that F is closed under modus
ponens

If we add to the system F the sentence ∀x(Fx↔Kx) we obtain a new recursively
enumerable set. Let us call this set Σ . Σ may not be a system in our sense since it
may not be closed under modus ponens. It is by closing Σ under modus ponens that
we obtain the system F ′. Maybe surprisingly, it is precisely this closure under modus
ponens that creates a problem in the step from Line 1 to Line 2. Even though we
know by Line 1 and (T -In) that all members of Σ are true, we do not know without
further assumption that all the members F ′ are true because we do not know whether
the truth predicate is closed under modus ponens. For all we know there could be
sentences φ and ψ such that Tpφq, Tpφ → ψq but ¬Tpψq. To guarantee that the
truth predicate will be closed under modus ponens we need to add this requirement
as a further assumption:

(T -Imp) ∀x,y(Sent(x→. y)→ (T (x→. y)→ (T x→ Ty))).24

If (T -Imp) is assumed, then the inference from Line 1 to Line 2 follows from (T -In),
(T -Imp) and an induction on the length of a proof in F ′.

There is a further small lacuna in the proposed reconstruction of the argument,
namely, in order to derive Line 3 we need to assume that no false arithmetical sen-
tence is true (in the object-linguistic sense).25 There are several ways this can be
achieved, but one straightforward and rather plausible way is to require the truth
predicate to be an adequate truth predicate for the arithmetical language. That is,
the Tarski biconditionals should hold for sentences of the arithmetical language: for
arithmetical sentences φ

(TB) Tpφq↔ φ .

Assuming (TB) we can derive Line 3 as illustrated below where GF ′ stands for the
Gödel sentence of F ′, i.e, a sentence such that

¬F ′(pG(F ′)q)↔ G(F ′)

23 There is an interpretation of the resulting theory in the theory KF together with the completeness
axiom. The interpretation would translate the absolute provability predicate as the truth predicate
but hold the remaining vocabulary fixed. See Halbach (2011) for more on the truth theory KF and
the completeness axiom.
24 Notice that it is of no help to replace F ′ by Σ , which is not closed under modus ponens, through-
out the argument. To carry out the argument we need to show that whatever can be proved from Σ

is true. To show this we need to assume the truth predicate to be closed under modus ponens.
25 Actually, we only need to assume ¬Tp0 = 1q. However, this would not change the general
situation. In particular Theorem 2 would still hold if (TB) were replaced by ¬Tp0 = 1q.
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can be proved via the diagonal lemma. We start our reasoning from Line 2.

2. ∀x(Fx↔ Kx)→∀x(F ′x→ T x)

a. ∀x(Fx↔ Kx)→ (F ′pG(F ′)q)→ TpG(F ′)q) by Line 2.
b. ∀x(Fx↔ Kx)→ (F ′pG(F ′)q→ G(F ′)) by Line 2(a)., (TB)

3. ∀x(Fx↔ Kx)→ G(F ′) by Line 2(b) and the definition of GF ′ .

This closes the final gap in the reconstruction of Penrose’s New Argument. If
(TK), (T -In), (T -Imp), (TB) and (Nec) are assumed then every step of the New
Argument is sound. But, unfortunately, we find ourselves essentially in the same
situation as in the reconstruction of the argument without the truth predicate: the
assumptions needed for carrying out the argument are jointly inconsistent.

Theorem 2 (Folklore). Let Σ be a theory extending Robinson arithmetic. Then

(T -In),(T -Imp),(TB) `Σ ⊥.26

The fact that the principles of truth required for carrying out Penrose’s reasoning
are jointly inconsistent suggests a deep flaw with his reasoning: Penrose seems to
rely on a naive notion of truth. But this is something we cannot do because naive
conceptions of truth, or absolute provability for that matter, lead to paradox. This
lesson has been taught to us by Tarski and Gödel a long time ago. Admittedly, at
this point such a strong conclusion seems a bit premature for two reasons. First,
so far we have not proved that the first disjunct of GD cannot be derived using the
principles Koellner puts forth, that is, we have not shown that the first disjunct of
GD is independent of these principles. However, as we show in an appendix to this
paper, even if we assume the truth predicate to be arithmetically sound, the first
disjunct does not follow from these principles.

Now, the second reason why, at this point, one should be careful with drawing too
strong conclusions from the inconsistency result is that, as we noted earlier, from a
technical point of view it might be possible to carry out Penrose’s New Argument
using typed principles of truth, that is, principles of truth in which the truth predicate
is not applicable to sentences in which it occurs. Earlier in this paper we dismissed
such a typing restriction for philosophical and systematic reasons but if we could
carry out Penrose’s New Argument using typed principles that are jointly consistent
this would show that Penrose’s reasoning does not necessarily appeal to a naive (and
inconsistent) notion of truth.

3.2 Penrose’s New Argument and Simplistic Typing

Looking back at Koellner’s reconstruction of the New Argument and our slight
amendment thereof it seems that at least the principles (T -In), (TK) and (Nec) can

26 See Friedman and Sheard (1987) for a proof of Theorem 2.
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be restricted to sentences in which the truth predicate does not occur and Penrose’s
reasoning would still to go through. Notice that the typing restriction we have in
mind is rather crude and simplistic because it blocks the use of these principles with
respect to sentences in which the truth predicate occurs while it allows for the ap-
plication of these principles to sentences in which the truth predicate is mentioned.
From this point of view the typing restriction we propose is unprincipled and ad
hoc but, as we have pointed out, at this point we are only interested whether the
restriction turns the New Argument into a valid argument.

To this end we let LK be the language without the truth predicate, SentLK
a

predicate the set of sentences of the language and replace the principles (T -In), (TK)
and (Nec) by the following variants:

(TR
K) ∀x(SentLK

(x)→ (Kx→ T x)),

(T -InK) φ → Tpφq φ ∈LK ,

(NecK)
φ

Kpφq
φ ∈LK .

Unfortunately, the simple minded typing restriction of the principles at play
won’t be sufficient to block a variant of Theorem 2. In other words the principles
required for deriving the first disjunct are still jointly inconsistent.

Theorem 3. Let Σ be a theory extending Robinson arithmetic. Then

(TR
K),(T -InK),(T -Imp),(Nec),TB `Σ ⊥.27

Proof. Let δ be a sentence of LK such that

(‡) Σ ` δ ↔¬Kpδq.

We reason as follows:

1. Kpδq→ Tpδq (TK)
2. Kpδq→ Tp¬δq (‡),(T -InK)
3. Kpδq→ Tp¬δ ∧δq 1,2,(T -InK),(T -Imp)
4. Kpδq→⊥ 3,(T -InK),(T -Imp),TB
5. ¬Kpδq 4
6. δ 5,(‡)
7. Kpδq 6,(T -InK),(NecK)
8. ⊥ 5,7

ut
27 In order to carry out Penrose’s reasoning we cannot restrict (T -Imp) to sentences of LK . How-
ever, in the formulation of Theorem 3 we could use the restricted version of the principle as its
proof should make clear.
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Examining the reconstruction of Penrose’s New Argument there does not seem
to be an alternative possible restriction of the principles at play that would make
the principles jointly consistent while facilitating Penrose’s reasoning. Theorem 3
should therefore put an end to all attempts of vindicating the New Argument along
the lines of our proposed reconstruction. Of course, Penrose could try a similar
strategy to the one we discussed at the beginning of Section 3. That is, he could
argue that there is some restriction that blocks the use of, say, (Nec) in the “bad”
cases like in Line 7 in the proof of Theorem 3 but allows the use in the “good”
cases like Line 5 in Koellner’s reconstruction of the New Argument. But all the
critical remarks we made a the beginning of Section 3 will carry over to the present
case. In conclusion it thus seems fair to say that Penrose’s New Argument is simply
incoherent. The problem is that its reasoning makes essential use of a naive notion
of truth (or absolute provability), which in a context where a certain amount of self-
applicability is required irrevocably leads to paradox.

4 Global Reflection and the First Disjunct

Under the proposed formalization, Penrose’s New Argument cannot be turned into a
coherent argument but, of course, there might be alternative arguments for the first
disjunct of GD. This leads to the second question we outlined in Section 3, i.e., the
question of whether there are reasonable theories of truth and absolute provability
that yield an argument for the first disjunct of GD. As Koellner (2016) points out,
given the plentitude of theories of truth and absolute provability it seems difficult
to deal with all possible such theories. In contrast to Koellner, however, we do not
focus on one particular theory of truth.28 Instead we investigate the prospects of
providing a successful argument for the first disjunct using Penrose’s reductio strat-
egy. To this end, we shall now make slightly stronger assumptions on what a formal
system F is, that is, from now on we will take systems F to be classical recursively
axiomatizable theories. Under these presuppositions the assumption that “I am F”
can be reformulated as ∀x(PrF(x)↔ Kx), where PrF is a natural provability predi-
cate of the theory F . This amounts to a slight strengthening of the Mechanistic thesis
as we now only consider Turing machines whose outputs are closed under classical
logic.

Throughout we shall assume the principle (TK) and look for consistent theories
of truth and absolute provability in which the assumption that “I am F” leads to a
contradiction. Under this assumption (TK) implies the so-called Global Reflection
principle for F :

(GRefF) ∀x(PrF(x)→ T x).

28 Koellner (2016) constructs the theory DTK, which extends Feferman’s theory DT (Feferman,
2008) and shows that in this theory the first disjunct of GD is independent: it can be neither proved
nor refuted.
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Of course, no recursively axiomatizable theory F that is only remotely plausible can
prove the Global Reflection principle for itself because by Gödel’s second incom-
pleteness theorem we have

(∗) F ` ∀x(PrF(x)→ T x) ⇒ F ` ⊥.29

But then, since the assumption that “I am F” together with (TK) implies the Global
Reflection Principle, which in turn implies a contradiction it might seem that we
have already provided a reductio ad absurdum of the assumption and thereby estab-
lished the first disjunct of GD.

This would be a rather premature conclusion in at least two ways: First, while
we can prove that if F proves the Global Reflection Principle then F is inconsis-
tent we cannot prove that F proves that the Global Reflection Principle implies a
contradiction, i.e., F does not necessarily prove

(∗∗) ∀x(PrF(x)→ T x)→⊥.

But a successful argument for the first disjunct via the reductio strategy requires a
proof of (∗∗). The weaker claim (∗) is not sufficient for deriving the first disjunct of
GD.

Second, and more importantly, in conducting the reductio argument we may not
assume that we actually reason in F for this would not only presuppose that “I am
F” but also that I know which system F I am. This point goes back to Benacerraf
(1967) and was further discussed by, e.g., Reinhardt (1986). Reinhardt showed, at
least under a particular formalization, that while it is inconsistent to assume that “I
am F” and that “I know which system F I am”, it is consistent, to assume that “I am
F”, while not knowing which particular system F I am.30 In more technical terms
this means even though the idealized human mind might coincide with a particular
system F , it may not recognize the provability predicate PrF as “its” provability
predicate, that is the provability predicate of F . As a consequence, in the reductio
argument we cannot assume the Löb derivabiliy conditions and, in particular, we
may not infer PrF(pφq) whenever φ has been derived.31 This observation is crucial
since otherwise Penrose’s New Argument would have a coherent reconstruction. By
using Löb’s derivability conditions we could dispense of the rule (Nec) in the recon-
struction of the argument in Section 2 and thereby restrain ourselves to a consistent

29 We take it that any remotely plausible theory prevents the truth predicate from being entirely
trivial. In other words it should rule out the truth of false arithmetical sentences, i.e., ¬Tp0 = 1q
should be a theorem of F .
30 The discussion took place in the framework of epistemic arithmetic (Reinhardt, 1986; Shapiro,
1985) where paradoxical sentences can not be formed due to syntactic restrictions of the language.
In Reinhardt (1985b) showed that “I am F”, suitably formalized, was consistent contra Lucas and
Penrose. Reinhardt (1985a) establishes the inconsistency of I am F and I know that I am F . In
a paper that somewhat concluded this line of research Carlson (2000) showed that the so-called
strong mechanistic thesis, that is, the proposition that I am F and I know that I am some recusively
axiomatizable system was consistent. See, e.g., Koellner (2016) for discussion.
31 See Shapiro (2003) for similar remarks.
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set of principles of absolute provability. The argument would then run as follows
(we start with Line 3):

3. ∀x(Fx↔ Kx)→ G(F ′)
4. ∀x(Fx↔ Kx)→¬Fp∀x(Fx↔ Kx)→ G(F ′)q
5. Fp∀x(Fx↔ Kx)→ G(F ′)q 3, by Löb’s derivability conditions
6. ∀x(Fx↔ Kx)→⊥.

Bearing the previous remarks in mind this argument is clearly not a convincing
argument for the first disjunct. It fails to establish that there is no recursively axiom-
atizable theory whose theorems coincide with the absolutely provable sentences but
shows that there is some particular system F that falls short of absolute provability:
the system F in which line 3 can be proven and the human mind, that is F , knows
that this is so. In other words, the argument establishes that it is impossible that I
am F and I know that I am F but fails to establish the first disjunct of GD. Reca-
pitulating our discussion, the question of whether we can successfully argue for the
first disjunct of Gödel’s Disjunction using the reductio strategy depends on whether,
given a reasonable theory of truth and absolute provability, the Global Reflection
Principle leads to a contradiction without introducing any particular assumption
about which recursively axiomatizable theory we are working in. The theory and
particular its proofs are completely opaque to the (idealized) human mind: it does
not know its axioms or rules of proof. This severely restricts the force of the Global
Reflection Principle: even if, assuming that “I am F”, I were to derive (GRefF), I
would not realize that I have established my own soundness and as a consequence I
might be unable to derive my inconsistency. Indeed, the fact that I do not realize that
I have established my own soundness may save me from becoming inconsistent. As
it were, from my perspective, (GRefF) could reflect about any recursively axiomati-
zable system—I just don’t know which one. Given the dialectical situation it seems
difficult to derive a contradiction from the Global Reflection Principle because what
it tells us under these circumstances is that whatever is provable in every recursively
axiomatizable theory (perhaps extending some basic arithmetical theory) is true. At
least prima facie this seems to be a rather unproblematic and uncontroversial claim
for it only means that logical truths should in fact be true (in the object-linguistic
sense). It thus may come as a surprise that even under these weak assumptions there
exist reasonable theories of truth and absolute provability in which a Penrose-style
reductio argument for the first disjunct can be carried out.

4.1 A New Argument Against Mechanism

The theory KFC, i.e. Consistent Kripke-Feferman, is a compositional theory of truth
in the sense that it commutes with all logical connectives with exception of nega-
tion, for which we may eliminate double negation inside the scope of the truth pred-
icate.32 Moreover, KFC as opposed to KF simpliciter asserts the consistency of the

32 See Halbach (2011) for more details about KFC.
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truth predicate, which in KF is equivalent to the principle

(T -Out) Tpφq→ φ .

By results in Stern (2014b) we know that there are plenty of consistent reasonable
theories of truth and absolute provability that extend KFC and prove (TK). The
argument below shows that the proponent of such KFC-style theories of truth and
absolute provability is committed to accepting the first disjunct of GD, that is, they
have to deny mechanism provided they accept all the background assumptions. Let
λ be the standard Liar sentence, that is, a sentence such that the theory F under
consideration proves:

(L) ¬Tpλq↔ λ .

1. F ` ∀x(K(x)↔ PrF(x))→∀y(Prσ (y)→ T (y)) TK

2. F ` ∀x(K(x)↔ PrF(x))→ (PrF(pλ ∨¬λq)→ T (pλ ∨¬λq)) 1
3. F ` Pr /0(pλ ∨¬λq)
4. F ` ∀x(K(x)↔ PrF(x))→ T (pλ ∨¬λq)) 2,3
5. F ` ∀x(K(x)↔ PrF(x))→ T (pλq)∨T (p¬λq) 4,KF
6. F ` ∀x(K(x)↔ PrF(x))→¬λ 5,(L),(T -Out)
7. F ` ∀x(K(x)↔ PrF(x))→ Tpλq 6,(L)
8. F ` ∀x(K(x)↔ PrF(x))→ λ 7,(T -Out)
9. F ` ¬∀x(K(x)↔ PrF(x)) 6,8

The crucial step in the argument is Line 3, which says that λ ∨¬λ is provable
without premisses, that is, in logic alone. This implies that for all classically re-
cursively axiomatizable theories F , PrF(pλ ∨¬λq). The argument therefore estab-
lishes the first disjunct of GD since no special assumption concerning F was made.
It is noteworthy that the argument, even though it is a reductio argument, is very
different to Penrose’s New Argument. It exploits the fact that in KFC-style theo-
ries of truth and absolute provability the so-called internal logic, that is the logic
within the scope of the truth predicate, and the external logic diverge. The external
logic is just classical logic while the internal logic of KFC-style theories is strong
Kleene logic. As a consequence classical tautologies are not generally true in the
object-linguistic sense and cannot be for sake of consistency. However, we have as-
sumed classical logic throughout and, in particular, our formalization of “I am F”,
i.e. F ` ∀x(K(x)↔ PrF(x)), reflects this fact since the axioms of classical logic are
built into the standard provability predicate. This implies that we are only consider-
ing theories formulated in classical logic and thus no matter which particular system
F we consider, F will prove the classical tautologies. As a consequence (TK) has
the effect of adding the classical tautologies to the internal logic of the theory. But,
as our argument shows, this leads to a contradiction in KFC-style theories of truth
and absolute provability and we may conclude that for no recursively axiomatizable
system F , it can be established that “I am F”.

Is this new argument for the first disjunct of GD a good argument? That de-
pends on whether one takes KFC-style theories to be suitable theories for discussing
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Gödel’s Disjunction and related issues, and, moreover, whether one takes the ar-
gument to be intuitively plausible. We take it that the answer to both questions is
negative. First, KFC-style theories violate one of the fundamental assumptions un-
derlying the debate surrounding GD, namely, that provability in recursively axiom-
atizable theories of mathematics implies truth. But in KFC-style theories there exist
sentences φ , e.g. λ ∨¬λ , such that PrF(pφq) and ¬Tpφq. In other words these
theories are provably unsound according to their own standards. Indeed, they are
provably unsound with respect to the standard of every recursively axiomatizable
theory. Second, it is precisely this feature that our argument for the first disjunct of
GD relies on because (GRefF) asserts that provability implies truth which it can-
not in KFC-style theories. The argument thus exploits a pathological feature of the
theory and this undermines the credibility of the argument. In order to be convinc-
ing there should be a plausible and intuitive rationale to the argument but there is
none and this is at least partly due to the fact the argument relies on the pathological
aspects of the theory. In light of these remarks even the convinced anti-mechanist,
that is the proponent of the first disjunct of GD, should grant that KFC-style theo-
ries of truth and absolute provability might just not be a solution to the intensional
paradoxes that allows us to establish the first disjunct of GD. However, the problem
goes beyond KFC-style theories of truth and absolute provability because the only
possibility to derive a contradiction on the basis of (GRefF) is precisely if such a
clash between the external and the internal logic of the theory arises: in such a situa-
tion (GRefF) forces the internal logic to coincide with the external logic, which may
provoke a contradiction. If we are right, then our skeptical remarks concerning our
argument extend to any argument based on the reductio strategy, at least if classical
logic is assumed.

5 Conclusion

The present investigation was devoted to arguments for the first disjunct of GD. We
put all conceptual worries aside and assumed that there was an intelligible notion
of absolute provability where a sentence was supposed to be absolutely provable iff
it was the output of, i.e. proved by, an idealized human mind. But even pursuing
this charitable course we were unable to provide a valid version of Penrose’s New
Argument and we do not see how the problems with the argument can be fixed.
In our view the argument is deeply flawed because it assumes naive conceptions of
self-applicable notions like truth and absolute provability. But Tarski and Gödel told
us that these naive notions lead to paradox: ultimately, this is why Penrose’s New
Argument cannot be fixed.

We then looked at Penrose’s reductio strategy and, using this strategy, provided
an argument for the first disjunct that was at least technically sound. However, we
argued that the argument exploited a pathological feature of the underlying theory
which undermined the plausibility of the argument and also caused the argument
to lack an intuitive rationale. Moreover, the shortcomings of our argument are most
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likely to affect all successful arguments for the first disjunct based on the reductio
strategy as we presented it in Section 4.

Of course, none of our findings show that there cannot be an argument for the first
disjunct based on the incompleteness theorems and a theory of truth and absolute
provability. But combining our findings with the observations of Benacerraf (1967),
Reinhardt (1986), Lindström (2001, 2006), Shapiro (2003), Koellner (2016) and
others we slowly seem to run out of options how such a plausible and successful
argument could look.33 It might be time for the anti-mechanist to come up with an
entirely different type of argument for the first disjunct of Gödel’s Disjunction, a
type of argument that does not rely on Gödel’s incompleteness theorems.
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Egré P (2005) The knower paradox in the light of provability interpretations of

modal logic. Journal of Logic, Language and Information 14:13–48
Feferman S (2008) Axioms for determinateness and truth. Review of Symbolic

Logic 1:204–217
Friedman H, Sheard M (1987) An axiomatic approach to self-referential truth. An-

nals of Pure and Applied Logic 33:1–21
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Appendix

In this appendix we show that the first disjunct of GD cannot be proved on the basis
of the principles (TK),(T -In),(TB), and (Nec).34 We introduce some new termi-
nology to state the independence result in a precise way. We write We to denote the
output of the Turing machine with index e. Using this terminology the first disjunct
of GD can be formulated as

(∗) ¬∃e∀x(We(x)↔ Kx).

We will show that (∗) is independent of the principles (TK),(T -In),(TB), and
(Nec).

Theorem 4. Let PATK be the extension of PA in the language containing a truth
and an absolute provability predicate (LPATK). Then

(TK),(T -In),(TB),(Nec) 6`PATK ¬∃e∀x(We(x)↔ Kx).

Proof. The proof of Theorem 4 is an compactness argument: if we can prove (∗)
in PATK on the basis of (TK),(T -In),(TB), and (Nec), then there must be a finite
proof of (∗) in PATK and, in particular, a proof with only finitely many applications
of the rule (Nec). The argument we give shows that there cannot be such a proof of
finite length for (∗). To this end we define a family of theories by recursion:

Σ0 := Cn[PATK+(TK)+(T -In)+(TB)]

Σn+1 := Cn[Σn +{Kpφq : Σn ` φ}]

where Cn denotes the operation that closes these sets of sentences under logical con-
sequence. Σn allows for proofs with n-many applications of the rule (Nec). Notice
also that by construction Σn ⊆ Σn+1. By our compactness argument it follows that if

(TK),(T -In),(TB),(Nec) `PATK ¬∃e∀x(We(x)↔ Kx),

then there must be a proof of (∗) in some Σn for n ∈ ω . We now construct a suitable
model Mn for each Σn with n ∈ ω such that

Mn |= ∃e∀x(We(x)↔ Kx).

Let M0 = (N,‖T‖0,‖K‖0) with

‖T‖0 := {φ : (N |= φ &φ ∈LPA) or (φ ∈LPATK &φ 6∈LPA)}
‖K‖0 := {φ : PATK ` φ}.

34 A similar, almost trivial argument shows that the first disjunct of GD can also not be obtained
using the principles (TK),(T -In),(T -Imp), and (Nec). A proof is left to the reader.
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Clearly, M0 |= Σ0 and M0 |= ∀x(PrPATK(x)↔ Kx). But the theorems of PATK are
recursively enumerable and we thus know that M0 |= ∃e(We(x)↔Kx). Now, for Mn
we define

‖T‖n+1 := ‖T‖n

‖K‖n=1 := {φ : Σn ` φ}.

It trivially follows that Mn+1 |= Σn+1 and Mn+1 |= ∀x(PrΣn(x)↔Kx), which implies
Mn |= ∃e(We(x)↔ Kx). This concludes the proof of Theorem 4. There cannot be
a proof establishing the first disjunct of GD on the basis of the principles (TK),
(T -In), (TB), and (Nec).


