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Abstract

In the present piece we defend predicate approaches to modality, that is approaches

that conceive of modal notions as predicates applicable to names of sentences or propo-

sitions, against the challenges raised by Montague’s theorem. Montague’s theorem is

often taken to show that the most intuitive modal principles lead to paradox if we con-

ceive of the modal notion as a predicate. Following Schweizer [16] and others we show

this interpretation of Montague’s theorem to be unwarranted unless a further non trivial

assumption is made—an assumption which should not be taken as a given.

We then move on to showing, elaborating on work of Gupta [5], Asher and Kamp [2], and

Schweizer [16], that the unrestricted modal principles can be upheld within the predicate

approach and that the predicate approach is an adequate approach to modality from the

perspective of modal operator logic. To this end we develop a possible world semantics

for multiple modal predicates and show that for a wide class of multimodal operator

logics we may find a suitable class of models of the predicate approach which satisfies,

modulo translation, precisely the theorems of the modal operator logic at stake.

1 Introduction

Prima facie there seem to be two options how one can go about when formalizing modal

notions. One is the now common treatment of modalities as sentential operators, that is
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modalities are conceived as expressions that take a sentence as argument and yield a new

sentence. The other so-called predicate (or syntactical) approach conceives of modalities

as predicates applicable to names of sentences or propositions. Even though the predicate

approach to modality seems to be a perfectly viable alternative to the standard operator

approach it has received little attention despite prominent advocates like Carnap and Quine.

This neglect may be due to the impressive story of mathematical success of modal operator

logic which originated with the development of possible world semantics by Kanger, Kripke,

Hintikka and others. Another reason for this underrepresentation of predicate approaches

to modality, however, might be attributed to what is nowadays called Montague’s theorem

and which is commonly interpreted as showing that the intuitive and constitutive modal

principles lead straight to paradox once we take the modality at stake to be aptly formalized

by a predicate. For example, Slater [18] even takes Montague’s theorem to show that we have

to give up predicate approaches to modality, which he calls syntactic approaches, altogether:

“Since Montague, we surely now know that syntactic treatments of modality

must be replaced by operator formulations.” (Slater [18], p. 453)1

In this piece, following up on the work of Niemi [14], Gupta [5], Asher and Kamp [2], and

Schweizer [16], we take issue with this interpretation of Montague’s theorem. On the one

hand, if this interpretation of Montague’s result were correct, Tarski’s undefinability result

would establish that truth ought to be treated as an operator. For Tarski’s result would then

establish that we cannot unrestrictedly adopt the most constitutive and intuitive principle

of the notion of truth, namely Tarski’s convention T , for sake of paradox. Yet, virtually

no-one has taken Tarski’s undefinability theorem to show that truth ought not be treated as

a predicate.2 On the other hand, or so we argue, we may consistently adopt the principles

of modal operator logic in the predicate setting, that is we point out that Montague’s result

hinges on a further non trivial condition and show the consistency and adequacy of a wide

class of modal logics in the predicate setting. Indeed, we even provide consistency and

adequacy results for a wide range of multimodal logics.

Accordingly, the plan of the paper is the following. We start by a careful discussion

of Montague’s theorem and argue that his result hinges on the fact that the names of the

sentences we use in stating the modal principles are what we call their arithmetical names

(or something alike). Next we show how Gupta [5] used this observation in the case of truth

to construct a classical model in which the unrestricted convention T would obtain. A fact

one would initially have taken to contradict Tarski’s undefinability result. We then go on to

1Montague [11] and Kripke [10] comment in the same vein although their formulation are much more careful.
2See Skyrms [17] for remarks along these lines.
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showing how Gupta’s construction may be used to construct a possible world semantics for

modalities conceived as predicates. A semantics in which the unrestricted modal principles

may be satisfied. Finally, in the last section of this paper we turn toward adequacy results

of the kind proposed by Skyrms [17] and Schweizer [16]. That is, we show that for a wide

class of multimodal operator logics we may find a suitable class of models of the predicate

approach that satisfy modulo translation precisely the theorems of the modal operator logic

at stake. More precisely, we show that if a modal operator logic is complete with respect to a

class of frames of possible world semantics for modal operator logic in which the accessibility

relation has a certain property Φ, then modulo translation all theorems of the modal operator

logic under consideration will be true in a class of possible world frames of the predicate

approach in which the accessibility relation equally has property Φ. This result may be

taken to suggest that the predicate approach to modality is adequate from the perspective

of modal operator logic. The novelty our work resides in the generalization of Gupta’s

work to a possible world semantics for multiple modalities3 and, most importantly in the

generalization of the mentioned adequacy results à la Schweizer [16] to the broad class of

multimodal logics hinted at above. Moreover, the strategy we use in establishing this latter

result is genuine and departs from the strategy used in Schweizer [16]. We now start with

the discussion of Montague’s theorem.

2 Montague’s Theorem

As we have just mentioned we will now introduce and discuss Montague’s theorem. To this

end we highlight the necessary background assumption of Montague’s theorem, discuss its

consequences and, eventually, point toward a possible way out of the dilemma posed by

Montague’s result for the proponent of the predicate approach to modality.

It is well known that within relatively weak arithmetical theories, e.g. Robinson arithmetic

Q, we may encode syntax by the method of Gödel numbering and thereby provide names

for all expressions of the language under consideration. The name of an expression ζ would

then be the numeral of the Gödel number of ζ. In what is to come we shall denote this

“arithmetical name” of ζ by dζe. Yet, if we can encode syntax in this way, we may prove

the so-called diagonal lemma which in its simplest form tells us that for any formula φ(x)

where x is the only free variable in φ we may find a sentence δ that is provably equivalent

to φ(dδe/x).4 The diagonal lemma thus allows us to find sentences that—in a certain sense—

3Asher and Kamp [2] equally provide a possible world semantics for the predicate setting but their framework

is slightly different and only allows for one modal notion.
4A sentence is a formula with no free variable.

3



make assertions about themselves and thereby introduce self-reference into the framework.

In particular, if we have a truth or modal predicate in our language we may find a sentence

which is provably equivalent to the sentence which asserts that it is not true (or not necessary)

using the arithmetical name of the initial sentence for this claim. Now, Montague exploited

the existence of this kind of sentences to show that any theory Σ in which Q can be relatively

interpreted and where a formula α(x) obeys the modal principles

(Tα) α(dφe)→ φ

(Necα)
φ

α(dφe)

is inconsistent. Now, these two principles seem, at least intuitively, impeccable for most

modal notions and thus Montague’s theorem is thought to put a considerable amount of

pressure on predicate treatments of modality. For example, if we consider the notion of

necessity then (T) asserts that what is necessary is the case where (Nec) asserts that when

have inferred (or proved) φ we may conclude to its necessity.

For expository ease we state Montague’s theorem in a slightly less general way and omit

the complication of relative interpretability. Instead we require a theory Σ to be an extension

of Q in a language of arithmeticL or an extension thereof. But we start by presenting Tarski’s

undefinability theorem for this will allow us to view Montague’s theorem as a straightforward

strengthening of the former theorem

Theorem 2.1 (Tarski/Gödel). Let Σ be a theory extending Q in L and α a (possibly complex)

one-place predicate. If for every sentence φ ∈ L

(i) Σ ` α(dφe)↔ φ

then Σ is inconsistent.

Proof. As a consequence of the diagonal lemma there is a sentence λ such that

Σ ` λ↔ ¬α(dλe)

but since by (i) Σ ` α(dλe)↔ λ the contradiction is immediate. �

As we have already pointed out, Montague’s theorem can now be presented as a strength-

ening of the above theorem. That is, one direction of (i)—of course, (i) asserts that Σ proves

the Tarski biconditionals (TB)—can be replaced by a rule of inference for the inconsistency

to still obtain. The inconsistency can then be derived using the sentence λ we employed in

the proof of theorem 2.1.
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Theorem 2.2 (Montague). Let Σ a theory extending Q in L and α a (possibly complex) one-place

predicate. If for every sentence φ ∈ L

(i) Σ ` α(dφe)→ φ

(ii) Σ ` φ⇒ Σ ` α(dφe)

then Σ is inconsistent.

Proof. Again the proof makes essential use of the diagonal lemma:

1. Σ ` ¬α(dλe)↔ λ Diagonal lemma

2. Σ ` α(dλe)→ λ (i)

3. Σ ` ¬α(dλe) 1, 2

4. Σ ` λ 1, 3

5. Σ ` α(dλe) 4, (ii)

�

Clearly, Tarski’s and Montague’s inconsistency result depend on the modal principles

characterizing α and, more importantly, on the possibility of finding a sentence λwhich says

of itself that it is not α and thus on the ability to diagonalize on the predicate α. If one were

to block the possibility of diagonalizing α, the paradox could no longer be derived along

the outlines of theorems 2.1 and 2.2. Basically, this is the strategy of Tarski who, by typing

the truth predicate, did not allow for names of sentences in which the truth predicate occurs

in the argument position of the truth predicate itself. To appreciate how this blocks the

derivation of the paradox notice that the sentence λ is in more explicit terms the sentence

¬α(sub•(d¬α(sub•(v0, v0))e, d¬α(sub•(v0, v0))e))

and therefore λ cannot be constructed, if iterations of α are prohibited by the formation rules

of the language.5

While this strategy is successful in blocking the paradoxes it is inherently ad hoc in

flavor. After all, how could imposing such syntactic restrictions on the formation rules of the

language be justified on philosophical grounds? And at least prima facie it seems that this ad

hoc flavor transfers to all strategies that resolve the paradoxes by blocking the diagonalization

of the truth or the modal predicate. Moreover, several central modal principles involve

5Here, sub•(·, ·) represents the binary substitution function that takes the Gödel number of a formula φ with

exactly one free variable and the Gödel number of some expression ζ of the language as arguments and provides

the Gödel number of the sentence that results from φ when the free variable is replaced by the numeral of the

Gödel number of ζ as an output.
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iterated modalities which we cannot represent—at least in a straightforward manner—if we

opt for a typing solution. Accordingly, from this perspective it seems the proponent of the

operator approach has got a point in claiming that predicate approaches to modality fail to

provide an adequate treatment of the modal notions.

However, at least at the outset there does not seem to be any philosophical justification

or requirement for the names of the sentences to be the numerals of the Gödel codes of the

sentences, i.e. the arithmetical names, as assumed in Montague’s theorem. And this fact has

been exploited by e.g. Niemi [14], Gupta [5] and Schweizer [16].6 Gupta, for instance, shows

that once we postulate a distinct class of quotation names which are used to state the Tarski

biconditionals (TB), we can construct a classical model for truth that meets, contra Tarski,

an unrestricted form of convention T . As we shall see Gupta’s strategy generalizes to the

modal case and can even be used to provide a predicate account of multiple modalities.

Gupta’s construction relies on an observation which was probably noted explicitly for the

first time by Niemi [14] who provided a predicate account of modalities embracing, amongst

other principles, the modal principles (T) and (Nec). Remember that according to Montague’s

theorem these principles lead to an outright contradiction in the predicate setting. But Niemi

showed the consistency of his modal theory which he achieved by stipulating a distinct

class of names for the sentences of the language and using these names to state his modal

axioms. Contrary to the arithmetical names which serve as the names of the sentences in

Montague’s formulation of the modal principles these newly introduced names of sentences

do not necessarily provide the resources to represent syntax, i.e. concepts of syntax such as

the substitution function. But these resources are of crucial importance in the derivation of

the modal antinomies or the undefinability of truth.

This reveals a further often unnoticed assumption the derivation of Tarski’s and Mon-

tague’s theorem relies on which is nicely summed up by Schweizer:

“There are really two independent assumptions built into the above phenomenon

of modal self-reference:

(a) the possession of a class of terms structurally rich enough to do arithmetic

and to sustain the diagonal lemma, and
(b) the use of these terms as the privileged names of syntactical objects in defin-

ing the modal logic.” (Schweizer [16], p. 7)

Let us observe how the derivation of Tarski’s theorem can be blocked if assumption (b)

is dropped. As language we assume some arithmetical language L supplemented by a class

6In a way this had also been the strategy of Skyrms [17] although Skyrms equally blocks the diagonalization

of the modal predicate by syntactic means.
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of quotation names for the sentences of the language and a truth predicate. These quotation

names are conveyed by formulas flanked by squiggly quotes, i.e. OφN is the name of the

sentence φ. Furthermore we shall assume a theory Σ extending Q that proves the following

version of (TB)

(TB) TOφN↔ φ

Our theory Σ still has the means of proving the diagonal lemma and thus we can find a

sentence λ for which Σ proves

(L) ¬Tdλe ↔ λ

But this by no means licenses us to derive a contradiction, given the way (TB) was stated.

We can only derive

¬Tdλe ↔ TOλN

In order to derive a contradiction we would need to substitute dλe for OλN above or conversely.

But such a substitution will only be licensed if

(GQ) dλe =OλN

and this identity statement should by no means taken as a given. Rather one motivation

for introducing a class of quotation names might be to block the common identification

of sentences with their codes, i.e. their Gödel numbers. In this case (GQ) should not be

expected to be provable in a theory Σ nor should one expect (GQ) to be a true statement

since—as mentioned—the two terms will refer to two different objects. Alternatively, one

might suspect that a statement parallel to (L) but where the occurrence of the code of λ is

substituted by the quotation name of λ, i.e.

(QL) ¬TOλN↔ λ

can be proven within Σ. Yet, as we have pointed out, one should not expect (QL) to be

trivially provable in Σ since contrary to the case of the arithmetical terms we do not know

whether our quotation names “are structurally rich enough to do arithmetics and to sustain

the diagonal lemma”. Accordingly, one might introduce quotation names in order to work

within a setting in which names for the sentences of the language are available without

being prone to the effects of diagonalization. In fact this is precisely the framework of the

accounts of Niemi, Gupta and Schweizer. Now, before we turn to approaches of truth and the

modalities which are built upon this idea of postulating a distinct class of quotation names

let us briefly summarize our findings.
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Clearly, Montague’s theorem puts pressure on predicate approaches to modality for it

shows that we may not naively adopt the most basic modal principles we know from modal

operator logic. However, one should not take his result to be conclusive in showing that

predicate approaches to modality are to be replaced by operator formulations as Slater would

have it. Rather, if this were the right conclusion, we would also need to treat truth as an

operator. But this is a conclusion virtually nobody has drawn from Tarski’s undefinability

theorem. Yet we have seen that there is further respect in which Montague’s result fails to

be conclusive and which is more important to our inquiry: there seems to be no obvious

argument why we ought to state the modal axioms using the arithmetical names instead of

some alternative quotation names.

3 A Classical Model for Truth

In this section we show how Gupta [5] made use of a distinct class of quotation names to

construct a classical model for truth which satisfies an unrestricted version of Tarski’s con-

vention. Gupta’s construction will prove useful when we construe possible world semantics

for modal predicates.

In contrast to e.g. Niemi, Gupta does not construct a particular theory but shows that

independently of the base language and theory assumed we can construct a classical model

for truth in which the principle (TB) holds unrestrictedly. Gupta’s basic strategy is to start

with a model in which the truth predicate is assigned an arbitrary extension and then revise

this extension in a sequence of steps, i.e. the extension of the truth predicate at step α + 1 is

the set of sentences true in the model at step α. At limit ordinals all sentences which have

remained stably in the extension of the truth predicate from an ordinal β < α onward are

gathered to built the extension of T at the limit ordinal. We know that this process will not

in general lead to a classical model of the language in which (TB) holds unrestrictedly, if no

further assumption is made on behalf of the interpretation of the quotation names, that is the

names we use to state the principles of truth, is made. It needs to be guaranteed that

• the denotatum of the quotation name of a sentence is not the denotatum of the arith-

metical name of the sentence—its Gödel number for instance—and

• no function symbol or predicate is interpreted as a function or relation on the denotata

of the quotation names in a way that allows us to interpret a sentence of the language

as the liar sentence or some related paradoxical sentence.

Correspondingly, Gupta shows that any initial model in which these two conditions are

met can be extended to a model in which (TB) holds unrestrictedly. That is, Gupta shows
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that in this case (all) the sequence(s) of revisions of the interpretation of the truth predicate

converge(s) to a unique fixed point at the first limit ordinal ω.

While the first condition can be imposed on the interpretation function in a straightfor-

ward manner, it is unclear what we need to require exactly of the interpretation in order

for the latter condition to be satisfied. It is clear, however, that if we do not allow the inter-

pretation of predicates and function symbols other than the truth predicate to discriminate

between sentences, then it will be satisfied. This condition is clearly too strong and can

be liberalized in different ways. The interpretation of certain predicates can discriminate

between sentences. For instance, we could allow for a predicate saying of a sentence that it

is the negation of another sentence. Similarly, predicates for the remaining truth functional

connectives could be introduced without harm. However, to our knowledge, it remains

an open question how to spell out the second condition in its most liberal fashion, whilst

guaranteeing that the revision sequences still converge to a unique fixed point.

We shall sketch Gupta’s construction assuming a very restrictive condition on the in-

terpretation function of models.7 We start by defining the language LQT which has the

peculiarity of possessing besides the usual terms and predicates a class of quotation names

and a truth predicate. The vocabulary consists of the symbols of an arbitrary denumerable

first-order language augmented by the quotation symbols ‘O’ and ‘N’ and the truth predicate

‘T’. As one would suspect, in the presence of quotation names the expressions ‘formula’ and

‘term’ are defined by a simultaneous induction.

Definition 3.1 (Term, Formula and Quotation degree). The expressions ‘term’, ‘formula’ and

‘quotation degree’ of LQT are defined simultaneously. The quotation degree is a function qd :

TermLQT ∪ FrmlLQT −→ ω assessing the depth of embeddings of quotations in a formula:8

1. If t is a variable or an individual constant which is not a quotation name, then t is a term of

LQT with qd(t) = 0;

2. if t1, . . . , tn are terms of LQT and f n is a function symbol, then f n(t1 . . . tn) is a term of LQT

with qd( f n(t1 . . . tn) = max(qd(t1), . . . , qd(tn));

3. if t1, . . . , tn are terms of LQT and Pn a n-ary predicate constant, then Pnt1, . . . , tn is formula of

L with qd(Pnt1, . . . , tn) = max(qd(t1), . . . , qd(tn));

4. if φ is a formula, then ¬φ and ∀xφ are formulas with qd(¬φ) = qd(∀xφ) = qd(φ);

5. if φ and ψ are formulas, then φ ∧ ψ is a formula with qd(φ ∧ ψ) = max(qd(φ), qd(ψ));

6. if φ is a sentence of LQT, then OφN is a term of LQT with qd(OφN) = qd(φ) + 1.

7Our presentation closely follows Gupta [5], pp. 9-15.
8‘TermLQT ’ and ‘FrmlLQT ’ denote the set of terms and, respectively, of formulas of the languageLQT. Similarly,

‘SentLQT ’ stands for the set of sentences of LQT.
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Only certain models can be extended to a classical model satisfying (TB). We call models

that qualify in this respect proper premodels.

Definition 3.2 (Proper premodel). A proper premodel of LQT is a tuple (D, I) with SentLQT ⊂ D

and an interpretation function I on the whole vocabulary of LQT except the truth predicate such that

I has the following properties:

1. I(OφN) = φ for every sentence φ;

2. if a term t is not a quotation name, then I(t) < LQT;

3. if P is an n-place predicate and di ∈ SentLQT for 1 ≤ i ≤ n, then (d1, . . . , di, . . . dn) ∈ I(P) iff for

all d′i ∈ LQT, (d1, . . . , d′i , . . . dn) ∈ I(P).

4. No sentence appears in the range of I( f ), f being an n-place function symbol. If di, d′i ∈ SentLQT ,

1 ≤ i ≤ n, then I( f )(d1, . . . , di, . . . , dn) = I( f )(d1, . . . , d′i , . . . , dn).

We denote the class of all proper premodels byM.

The definition 3.2 reflects the informal condition set out before. Item 1 and 2 guarantee

that the quotation name of a sentence and its arithmetical name will not refer to the same

object, i.e. we distinguish between the sentence and its code. Items 3 and 4 on the other hand

guarantee that the second condition is met. The interpretation of predicates other than ‘T’

does not discriminate between different sentences. Either no sentence appears as a relatum

in the interpretation of a predicate or all of them do. The same holds for the interpretation

of a function symbol but, additionally, no sentence is allowed in the range of a function

interpreting a function symbol. The definition guarantees that no sentence is viewed as the

liar sentence or some other paradoxical sentence. Intuitively, this is the reason why we can

transform a proper premodel into a model in which (TB) is satisfied.

By definition 3.2 a premodel of the languageLQT is a tuple (D, I) which as of yet does not

assign an interpretation to the truth predicate. To obtain a full-fledged model of the language

LQT we need to provide some interpretation of the truth predicate. Such a full fledged-model

for the language LQT is denoted by (M,S) where M is a proper premodel and S, an arbitrary

subset of the domain, serves as the interpretation of the truth predicate. The idea is to start

with some arbitrary subset of the domain and then, through a series of revisions, to obtain

an interpretation of the truth predicate with some desirable properties. To this end we shall

define a classical jump or revision operation ΞM on the domain of a proper premodel M.

Definition 3.3 (Jump relative to a proper premodel). Let M be a proper premodel with domain

D. Then ΞM : P(D) −→ P(D) is a jump operation relative to M iff for all S ⊆ D

ΞM(S) := {φ ∈ SentLQT : (M,S) |= φ}
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We may iterate applications of ΞM to a given set S ⊆ ω and thereby obtain a series of

revisions of the interpretations of the truth predicate. We define by transfinite recursion:

Definition 3.4. Let M be a proper premodel, ΞM a jump relative to M, and S ⊆ D. Then we set for

ordinals α

ΞαM(S) :=


S , if α = 0

ΞM(ΞδM(S)) , if α = δ + 1

{φ ∈ SentLQT : ∃κ(φ ∈
⋂
κ≤β<α Ξ

β
M(S))} , if α is a limit ordinal

As mentioned, it can be shown that this process reaches a unique fixed-point at the first

limit ordinal ω. The following lemma is of crucial importance for establishing this fact.

Lemma 3.5. Let M be a proper premodel with domain D. Then for all S,S′ ⊆ D, all natural numbers

n, and all ordinals α, if α > n + 1, then for all sentences φ with dq(φ) ≤ n:

φ ∈ Ξn+2
M (S)⇔ φ ∈ ΞαM(S′)

The lemma establishes that relative to a proper premodel the truth of a sentence of

quotation degree n is settled latest at stage n+2. From this point on a sentence is either stably

in the extension of the truth predicate or it is stably not in the extension independently of the

choice of the initial interpretation of the truth predicate.

Sketch of a proof. Gupta [5] (pp. 9-15) gives a detailed proof of the lemma. We will confine

ourselves to giving the crucial ideas of the proof. The proof works by induction over n and

uses a side induction on α. Furthermore, three cases can be distinguished with respect to α.

Either (i) α is zero, or (ii) α is a limit ordinal, or (iii) α is a successor ordinal δ + 1. The first

two cases are trivial—(ii) due to definition 3.4 and the induction hypothesis (induction on α).

With respect to case (iii) one can observe that by definition 3.4 Ξn+2
M (S) and Ξδ+1

M (S′)

coincide on the sentences φ of quotation degree ≤ n iff

(M,Ξn+1
M (S)) |= φ⇔ (M,ΞδM(S′)) |= φ

By induction hypothesis (induction on n) we know that the two models agree on the sentences

of quotation degree < n. On the other hand the set Ξn+1
M (S) partitions the sentences of

degree ≥ n in two distinct denumerable sets. This is due to the fact that (M,Ξn+1
M (S)) is a

classical model and thus there are denumerable many tautologies and denumerable many

contradictions of degree ≥ n. The same holds for (M,ΞδM(S′)). This allows us to define a

bijection σ from the domain onto itself which respects the interpretation of the truth predicate,

i.e.

φ ∈ Ξn+1
M (S)⇔ σ(φ) ∈ ΞδM(S′)

11



where σ is the identity function on all the members of the domain which are not sentences

of degree ≥ n. In virtue of definition 3.2 and the fact that any quotation name of quotation

degree ≤ n has a sentence of degree < n as its denotatum we can establish for any formula

φ(x1, . . . , xn) of quotation degree ≤ n and d1, . . . , dn ∈ D

(M,Ξn+1
M (S)) |= φ[d1, . . . , dn]⇔ (M,ΞδM(S′)) |= φ[σ(d1) . . . , σ(dn)]

But then as a corollary (M,Ξn+1
M (S)) and (M,ΞδM(S′)) agree on the sentences of quotation degree

≤ n and consequently so do Ξn+2
M (S) and ΞαM(S′).9 �

Using lemma 3.5 we can establish our main claim, namely that we reach a fixed-point at

the first limit ordinal ω, which implies that for any premodel M with domain D and S ⊆ D

the LQT-model (M,ΞωM(S)) satisfies (TB):

Theorem 3.6. For any S ⊆ D and any premodel M and all sentences φ

(i) φ ∈ ΞωM(S)⇔ (M,ΞωM(S)) |= φ

(ii) (M,ΞωM(S)) |= TOφN↔ φ

Theorem 3.6 may be read as establishing that, contra Tarski, conventionT can be satisfied

in a semantically closed language.

At this point we do not wish to evaluate whether this construction might serve as a

viable conception of truth in its own right. However, what seems important to realize is that

the construction can be generalized in order to rebut Montague’s assessment that virtually

all of modal logic must be sacrificed, if we treat modalities syntactically10—at least, if this

assessment is understood in its straightforward, general way.

4 Models for Modalities Conceived as Predicates

We shall now generalize Gupta’s account and introduce an arbitrary finite number of modal

notions into the picture. To this end we combine the construction we have just sketched

with possible world semantics as known from modal operator logic. As a matter of fact we

shall later exploit the similarity between possible world semantics for modal operator logic

and the semantics to be constructed to show that consistent accounts of modality are not

only possible but adequate, if modal operator logic is taken to be an adequate account of the

modalities as is widely believed. In this we follow the lead of Skyrms [17] and Schweizer

9σ needs to respect the interpretation T as, e.g., a sentence of the form ∀xTx is of quotation degree 0.
10Cf. Montague [11], p. 294. Page numbers refer to the reprint in Montague [12].
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[16] who have already established—using similar techniques—the adequacy of syntactical

modal logic for a single modality with respect to the modal operator logic S5.

Extending the approach to multiple modalities is interesting from two perspectives. First,

natural language incorporates multiple modalities and thus from this perspective a formal

approach allowing for the joint treatment of several modal notions seems to be asked for. But

second, Niebergall [13], Halbach [6, 7] and, Horsten and Leitgeb [8] have shown that new

inconsistency results might arise, if we allow for multiple, interacting modal predicates.

The basic idea of the present proposal is to construct a possible world semantics by

quantifying over “Gupta-style” models. Consequently we will evaluate a modal predicate

with respect to a class of “accessible” models. More precisely, the interpretation of a modal

predicate will be the intersection of the interpretations of the truth predicates in the models

accessible from the present model.

In “A Syntactical Approach to Modality” Schweizer [16] puts forward a similar approach

as he also quantifies over “Gupta-style” models. But his approach is less general in two

respects. First, Schweizer considers only one modality and therefore does not provide an

account that can deal with multiple modalities, but second Schweizer only considers the

modal logic S5 and thus does not allow the accessible models to vary from one model to

another.11

A related account has been developed by Asher and Kamp [1, 2] who also construct

a possible world semantics based on Gupta’s and Herzberger’s Revision Theory of Truth.

The inquiry of Asher and Kamp [2] is probably closest to the present undertaking, however

they work in a slightly different—and to our mind slightly more complicated—-setting. In

their work they only consider one modal predicate, but a generalization to multiple modal

predicates seems to be rather straightforward.

We will work in a languageLQM which is likeLQT except that we add a finite number of

one place modal predicates, say N1, . . . ,Nn. The expressions ‘term’, ‘formula’, and ‘quotation

degree’ are defined by the ovious modification of definition 3.1. We do not reproduce the

definition. Accordingly our language possesses quotation names for all the sentences of the

language. We may also adopt definition 3.2 without change (obviously the modal predicates

may discriminate between different sentences).

Contrary to the case of a single truth predicate that we discussed above, the interpretation

of truth and the modal predicates will not simply be defined relative to one model but rather

11In possible world semantics for modal operator logic the logic S5 characterizes a frame based on an equiva-

lence relation. It can be shown that in this case accessibility relation can be dropped and instead of quantification

simpliciter over a set of possible worlds simpliciter. Cf. Hughes and Cresswell [9] and Blackburn et al. [3] for

more on modal logic and possible world semantics.
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the interpretations will depend upon a modal frame. A modal frame consists of a nonempty

set of premodels W which will serve as our set of possible worlds and a finite number of

accessibility relations defined on this set. Besides the notion of a modal premodel frame we

need the notion of an evaluation. An evaluation assigns to every world, i.e. every premodel

inW, a set of sentences of LQM which will serve as the interpretation of the truth predicate

at this world:12

Definition 4.1 (Modal Premodel Frame, evaluation function). Let W , ∅ be some set of

premodels, i.e. W ⊆M, and R1, . . . ,Rn dyadic relations onW. Then F = 〈W,R1, . . . ,Rn〉 is called

a modal premodel frame. A function f : W 7→ P(SentLQM) is called an evaluation function relative

to F. The set of all evaluation functions relative to a frame F is denoted by ValF.

A modal premodel frame together with an evaluation function induce a model for LQM

relative to each member ofW.

Definition 4.2 (Models for LQM). Let F be a frame and f ∈ ValF an evaluation function. Then F

and f induce a model M f = (M, f (M),Y1
M, . . . ,Y

n
M) of the language LQM relative to every premodel

(world) M. f (M) is is the extension of the truth predicate at M and Yi
M, with

Yi
M f =

⋂
M′∈[MRi]

f (M′)

the extension of the modal predicates.13 [MRi] is shorthand for the set {M′ ∈ W : MRiM′}.

Definition 4.3 (Modal Jump relative to a premodel frame). Let F ba a frame and ValF be the set

of evaluation functions of F. The modal jump relative to F, ΞF, is an operation on ValF such that for

all f ∈ ValF and all M ∈ W

[ΞF( f )](M) = {φ ∈ SentLQM : M f
|= φ}

Iterative applications of ΞF for a given ordinal α are defined by transifinite recursion as in definition

3.4:

ΞαF( f ) :=


f , if α = 0

ΞF(ΞδF( f )) , if α = δ + 1

g ∈ ValF , if α is a limit ordinal

where for all M ∈ W

g(M) = {φ ∈ SentLQM : ∃κ(φ ∈
⋂
κ≤β<α

[ΞβF( f )](M))}

For a given frame F and evaluation function f we sometimes write f α instead of ΞαF( f ).

12Since the domains of the premodels may vary we decided to avoid complication and to consider subsets of

the set of sentences of LQM as interpretations of the truth predicate only.
13We assume

⋂
to be an operation on P(SentQM) and thus, in particular,

⋂
∅ = SentQM.

14



Thus the iterative application of the modal jump relative to a frame leads us to a sequence

of interpretations of the truth predicate and the modal predicates. As before it can be shown

that the process reaches a unique fixed-point at the first limit ordinal ω, i.e. lemma 3.5 carries

over with minor modification.

Lemma 4.4. Let F be a modal premodel frame and f , g ∈ ValF. Then for all M ∈ W, all natural

numbers n and all ordinals α, if α > n + 1 then for all sentences φ with dq(φ) ≤ n:

φ ∈ [Ξn+2
F ( f )](M)⇔ φ ∈ [ΞαF(g)](M)

Proof sketch. We use the construction of the proof of lemma 3.5 and observe that we can

construct the mapping σ such that it respects the interpretation of the truth and the modal

predicates, i.e. σ : D −→ D is a bijection which is the identity function on the sentences of

quotation degree < n and on D − SentLQM , and additionally,

φ ∈ [Ξn+1
F ( f )](M)⇔ σ(φ) ∈ [ΞδF(g)](M)

φ ∈ Yi
M f n+1 ⇔ σ(φ) ∈ Yi

Mgδ

for all i, with 1 ≤ i ≤ n. We can find such a function σ due to the following observations: Let

U be the interpretation of a modal predicate at a stage γ and V the interpretation of either

the truth predicate or one of the remaining modal predicates, then either

• U and V coincide, or

• U is a denumerable subset of V, and V −U is also denumerable, or

• U ∩ V is denumerable set of sentences, and so are U − V and V −U.14

Then given such a function σ the argument used in the proof of lemma 3.5 allows us to

conclude to the desired. �

Corollary 4.5. Let F be a frame. Then for all evaluation functions f , g ∈ ValF and all φ ∈ SentLQM

(i) ΞωF ( f ) = Ξω+1
F (g)

(ii) M fω
|= φ⇔ φ ∈ fω(M)

14To see this, note that the interpretations of the truth and modal predicates cannot be disjoint since all the

tautologies and the L-truths are in the interpretation of the truth predicate in every model. If there exists a

sentence which is not in the interpretation of the one predicate but the other, then there exist denumerable many

sentences of this kind: take all the conjunctions of tautologies with this sentence. This explains the second

observation. A parallel argument establishes the third.
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The corollary implies the existence of unique fixed-points of ΞF in ValF, i.e. there exists

exactly one evaluation function g ∈ ValF with

ΞF(g) = g

This allows us to define the notion of a proper model of LQM:

Definition 4.6 (Proper Model). Let F be a frame, g the evaluation function in ValF with ΞF(g) = g

and M ∈ W a proper premodel. Then the model Mg induced by F and g relative to M is called a

proper model ofLQM. We write F,M |= φ to convey the fact that φ is true in the proper model induced

by the premodel M relative to F.15 If a formula φ ∈ LQM is true in all proper models induced by a

frame, we write F |= φ. Let F be a class of frames, if for all F ∈ F(F |= φ) we write F |= φ.

(TB) is true in any modal premodel frame. Moreover, in virtue of our construction the

modal principle (K) holds for every modal predicate, i.e.:

Theorem 4.7. Let F be the class of all modal premodel frames. Then for all φ,ψ ∈ SentLQM

F |= TOφN↔ φ

F |= NiOφ→ ψN→ (NiOφN→ NiOψN)

for all i with 1 ≤ i ≤ n. Moreover, if φ is true in all proper models induced by a frame F, then NiOφN

will be true in all models induced by F.

At first sight theorem 4.7 might seem disappointing since our models only satisfy the

modal principle (K) but whereas, without doubt, we wish further modal principles to be

true. However, this is just parallel to the situation in possible world semantics for modal

operator logics. If no assumptions are made on behalf of the accessibility relations of a modal

frame, the models based on this frame are only guaranteed to validate the operator versions

of (K).

But as in possible world semantics for modal operator logic we can impose conditions on

the accessibility relation R1, . . . ,Rn of a modal premodel frame in order to ensure that further

modal principles will be true in a proper model. For example, if we require an accessibility

relation Ri of a modal premodel frame F to be reflexive, then for every proper model M

induced by F the principle (T) will turn out true:16

M |= NiOφN→ φ

15Note that as a consequence of the uniqueness of fixed-points for every frame F and proper premodel M ∈ W

there exists only one proper model which is induced by M relative to this frame.
16We use calligraphic letters to denote proper models.
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Basically, this can be done for all the common, characteristic modal principles including

those principles that deal with the interaction of the modal predicates. This highlights how

the present semantic approach parallels possible world semantics for modal operator logic

to a certain extent. Indeed, we may impose one and the same condition on the accessibility

relation of a modal premodel frame and on the accessibility relation of a possible world frame

for modal operator logic.

Definition 4.8 (Property Φ). A modal premodel frame and a modal frame of possible world semantics

for modal operator logic can share the conditions imposed on the accessibility relation. We call these

conditions “property Φ”.

Comparing the effects of imposing certain properties on the accessibility relation shows

that possible world semantics for modal operator logic and the semantics we just developped

work pretty much in the same way. In general, if a certain property Φ is imposed on the

accessibility relations of a modal premodel frame and a modal frame for modal operator logic

respectively, the “same” modal principles will be true in both frames. To use our example

once more: if the accessibility relation is reflexive, the predicate version and the operator

version of the modal principle (T) will be true in the modal premodel frame or, respectively,

the modal frame, i.e. the possible world frame of modal operator logic.

We can exploit the structural similarities between the two semantics in order to show that

the predicate approach to modalities is adequate with respect to a wide class of multimodal

operator logics. Moreover, the semantics that we have developed is rather flexible and

intuitive to the extent possible world semantics for modal operator logic is. Accordingly, the

champion of possible world semantics should be tempted by the present approach.

5 Adequacy of the Predicate Approach to Modalities

The idea behind the adequacy result is to show that the syntactical approach validates exactly

the theorems of modal operator logic. Of course, it remains to be specified what it means for

the syntactical approach to validate the same theorems as we are dealing with two different

languages and as a trivial consequence a theorem of modal operator logic cannot be true in

the syntactical approach (nor can it be false).

Still the gist of the affirmation seems to be pretty clear. If a modal operator logic proves

a certain modal statement, then the corresponding modal statement of the quotation name

language, i.e. the statement in which the modal operators of the initial statement are now

read as modal predicates and the formula in the scope of the operator will be placed between

quotation marks in order to form a quotation name, should be true in an appropriate modal
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premodel frame. The idea is to translate the propositional atoms of the modal operator

language into sentences of the language LQM and to guarantee that the translation function,

say H, commutes with the boolean connectives and translates a formula �iφ as NiOH(φ)N. To

this end let L�� be a multimodal language whose syntax is given by

φ ::= p | ¬φ |φ ∧ φ |�φ |�iφ

for 1 ≤ i ≤ n ∈ ω and p ∈ At�� where At�� denotes the set of propositional atoms of the

language. � is meant to be a truth operator. We define the notion of a translation H∗ over a

realization ∗.

Definition 5.1 (Translation). A mapping ∗ : At�� −→ SentLQM is called a realization. H∗ is a

translation function from L�� into LQM iff it respects the following conditions:

H∗(φ) :=



φ∗ , if φ ∈ At��i

⊥ , if φ � ⊥

¬H∗(ψ) , if φ � (¬ψ)

H∗(ψ) ∧H∗(χ) , if φ � (ψ ∧ χ)

TOH∗(ψ)N , if φ � (�ψ)

NiOH∗(ψ)N , if φ � (�iψ), for 1 ≤ i ≤ n

Using this notion of translation we can spell out our adequacy condition more precisely.

A sentence of the modal operator language is a theorem of a modal operator logic under

consideration, if and only if for every realization its translation will be true in an appropriate

class of modal premodel frames of the syntactical approach.

The class of modal premodel frames appropriate with respect to a modal operator logic

will be determined with respect to property Φ: if a modal operator logic is complete with

respect to the class of modal frames with property Φ, the class of modal premodel frames

with property Φ will be considered as appropriate.

Theorem 5.2. Let F�� be the class of possible world frames with property Φ and F the class of modal

premodel frames with property Φ. Then for all φ ∈ L��

F�� |= φ⇔ for all realizations ∗ (F |= H∗(φ))

To establish theorem 5.2 we shall employ two lemmata. The first one shows us how to

construct a possible world frame starting from a proper premodel frame whereas the second

establishes the converse direction:

Lemma 5.3. For all modal premodel frames F with property Φ, there exists a possible world frame

F�� with property Φ such that for all φ ∈ L��:

F�� |= φ⇔ for all realizations ∗ (F |= H∗(φ))
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Proof. Let F = 〈W,R1, . . . ,Rn〉 be the modal premodel frame. Now, take W to be the set

W of worlds of the possible world frame of modal operator logic and define R�i := Ri. Set

F�� := 〈W,R1, . . . ,Rn〉. We may verify by an induction over the complexity of φ that for all

M ∈ W

F��,M |= φ⇔ ∀ ∗ (F,M |= H∗(φ))

We discuss φ � �iψ and leave the rest to the reader. To this end assume F��,M |= �iψ. By

definition the latter is equivalent to

for all valuations V ∀M′(MR�iM
′
⇒ (F��i ,V),M′ |= ψ).

Since V does not occur in the antecedent this is equivalent to

∀M′(MR�iM
′
⇒ ∀V((F��,V),M′ |= ψ)).

By induction hypothesis and definition we get

∀M′(MRiM′ ⇒ ∀ ∗ (F,M′ |= H∗(ψ)))

and since ∗ is not bound in the antecedent of the above conditional we may conclude to the

desired. �

Lemma 5.4. For all possible world frames F�� with property Φ, there exists a modal premodel frame

F with property Φ such that for all φ ∈ L��:

F�� |= φ⇔ for all realizations ∗ (F |= H∗(φ))

Proof. Let F�� be the frame
〈
W,R�1 , . . . ,R�n

〉
. Take some set of proper premodels A with

|W| ≤ |A| and let γ : W −→ A be some injective mapping. We define

W := {γ(w) : w ∈W}

Ri = {
〈
γ(w), γ(v)

〉
: wR�iv}

and set F = 〈W,R1, . . . ,Rn〉. Again we may then verify by induction on the complexity of φ

that

F��,w |= φ⇔ ∀ ∗ (F, γ(M) |= H∗(φ))

which establishes the lemma. �

We may now state the proof of the main theorem as a trivial consequence of the two

lemmata:
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Proof of theorem 5.2. Suppose F�� |= φ but that there exists a modal premodel frame F with

property Φ and ¬∀ ∗ (F |= H∗(φ)). Then by lemma 5.3 we end up in contradiction. On the

other hand assuming ∀ ∗ (F |= H∗(φ)) and F�� 6|= φ equally leads to contradiction by lemma

5.4. �

We get a nice corollary from this result which can be read as the exact formal rendering

of the adequacy criterium we laid out:

Corollary 5.5. Let S be a modal operator logic complete with respect to the class of possible world

frames F with property Φ. Let F be the class of modal premodel frames with property Φ, then for all

φ ∈ L��:

S ` φ⇔ ∀ ∗ (F |= H∗(φ))

Proof. By completeness of Swe have for all φ ∈ L��i

S ` φ⇔ F |= φ

which together with theorem 5.2 establishes the claim. �

As we have argued the two results, theorem 5.2 and corollary 5.5 may be taken to show

the adequacy of the predicate approach to modality from the perspective of modal operator

logic. With this observation we end the present section and turn toward the conclusion of

our investigation.

6 Conclusion

The syntactical approach to modality we have just outlined appears to vindicate predicate

approaches to modality from the perspective of modal operator logic. As we have seen

the approach allows us to adhere to the unrestricted modal principles but at the same time

proves to be adequate from the perspective of modal operator logic. Moreover, the approach

comes with a semantics which is intuitive to the extent possible world semantics for the

modal operator can be considered to be intuitive. And even though the approach we have

outlined so far does not come with a developed proof theory the result of Asher and Kamp

[2], who provide a complete axiomatization of their semantics in the absence of vicious forms

of self-reference, suggest that this can be done along the lines of Niemi [14].

While the foregoing establishes that we may conceive of modalities as predicates we have

not provided an argument to the effect that we should. It is often thought that one advantage

of the predicate approach as opposed to the operator treatment lies in its greater expressive
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strength which allows us to provide a more adequate formalization of modal discourse from

the perspective of natural language. And indeed it is unclear whether the present proposal

is satisfactory from this latter perspective as for obvious reasons we may not, e.g. express

modal self-reference or other natural language phenomena which require the modal theory to

speak about its own syntax. Accordingly, a common reaction to vindications of the predicate

approach which embrace the unrestricted modal principles that in other settings would lead

to paradox has been to question whether these approaches can be considered as predicate

approaches to modality proper.17 We think, however, that this kind of argument is beside

the point as the modal notions have been introduced as predicates into the language and no

syntactic restrictions whatsoever have been placed on the formation rules of the language.

So there is no reason why they should be considered as operators.

We think the moral to be drawn is somewhat different. Montague’s theorem should not

be used as an argument against the predicate approach to modality but rather it should be

understood as a limitative result. That is, if we wish to have an expressively rich framework,

i.e. a framework in which modal self-reference is expressible, then independently of which

category of logical grammar we assume to aptly formalize the modal notion, we need to give

up the unrestricted modal principles we know from standard modal operator logic. If we are

happy with an expressively weak framework, then again independently of the grammatical

category assumed we may uphold the standard laws of modal logic.18
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